(4x)^2+(3x)^2=(23)^2

Simple and best practice solution for (4x)^2+(3x)^2=(23)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x)^2+(3x)^2=(23)^2 equation:



(4x)^2+(3x)^2=(23)^2
We move all terms to the left:
(4x)^2+(3x)^2-((23)^2)=0
determiningTheFunctionDomain 4x^2+3x^2-23^2=0
We add all the numbers together, and all the variables
7x^2-529=0
a = 7; b = 0; c = -529;
Δ = b2-4ac
Δ = 02-4·7·(-529)
Δ = 14812
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{14812}=\sqrt{2116*7}=\sqrt{2116}*\sqrt{7}=46\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-46\sqrt{7}}{2*7}=\frac{0-46\sqrt{7}}{14} =-\frac{46\sqrt{7}}{14} =-\frac{23\sqrt{7}}{7} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+46\sqrt{7}}{2*7}=\frac{0+46\sqrt{7}}{14} =\frac{46\sqrt{7}}{14} =\frac{23\sqrt{7}}{7} $

See similar equations:

| 10x-43.9=20x-169.5=30x-295=40x-420 | | 7(1-6x)+6x=187 | | 10x-43.9=20x-169.5=30x-295 | | 22+4x=152-9 | | 2p-8=p-12 | | 3x+7x-2+x+6=180 | | 10x-43.9=40x-420 | | 41+b=25 | | 30x-295=40x-420 | | .5(x-24)=3+8x | | h+2=5+2h-15 | | (X2+4)+(-5x-6)=22 | | 12x+2(13.16)=199 | | 10x-43.9=30x-295 | | -0.4x+0.5=-0.6 | | 3.4x=2.6x+4.8 | | 3(y-2)-6(y+1)=-3 | | 1/2x+(x-9)=180 | | .07x+.08(10,000-x)=560 | | 9x-15=7x+1 | | y2-545y+14000=0 | | X=15x-(7.5+550) | | .04x+.08(10,000-x)=270 | | -18y=-237 | | 4z=12,6 | | 30x-295=20x-169,5 | | (x)(9.5)+(x+37.4)(9.5)=589 | | -3y=2-16/5 | | x2+250x-36500=0 | | 0=10x^2-20x-1200 | | -.4x+.5=-.6 | | P(x)=15x-(7.5+550) |

Equations solver categories